贾宪听了包公的问题,先是点了点头,又摇了摇头,看得众人一阵发蒙。
只听他说道:
“书中确有解题之法,术文曰:‘三三数之剩二,置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十。
并之,得二百三十三,以二百十减之,即得。
’,答曰:‘二十三。
’”
“不过此解题术文仅限于以‘三’‘五’‘七’为定数的题目,金牍上的算题,却不能用此法求解。”
徐良讶异问道:
“贾老先生,你刚刚说的这什么算经上的题目,与金牍上的算题何其相似,难道没有变通之法?”
贾宪沉思半晌,才回答道:
“三将军说的甚是,老朽也认为应该有变通的解法,但需要些时间考虑一下。”
他转向辛子秋,说道:
“小秋,你有何看法?”
辛子秋抱着肩膀,看着题目,沉思起来。
正如贾宪所说,这是“物不知数”
题,在中国古代数学中又被称为“孙子问题”
,“韩信点兵题”
,“鬼谷算”
等等,涉及孙子定理,又称为中国剩余定理,非常有名。
这个题目在《孙子算经》中的解法很简洁,但不具有一般性,三个除数只能是3,5和7。
直到差不多二百年后,南宋大数学家秦九韶在著作《数书九章》中,创造出了“大衍求一术”
,才给出了这类问题的一般性解法和解题程序。
又过了五百多年,西方著名数学家高斯,最终给出了建立在现代数论基础上的系统解法。
而他的方法,其实与秦九韶的“大衍求一术”
基本一致。
可见宋元时期,中国古代数学之昌盛发达。
这道题目在辛子秋这种现代数论高手眼中,并不算多难,通过分解质因数法剔除公约数,然后再建立线性同余方程组求解即可,步骤很固定,没什么新意。
甚至他只要稍微花点时间,都能心算出答案。
令他思考的,并不是这题目的解法,而是这背后的一个个疑团。
先不说先秦时期究竟有没有这么厉害的冶炼和篆刻技术,能雕出如此精美的黄金简牍,单是这上面的题目,就够令人费解的。
();() 这“物不知数”
题虽然说难不难,但也绝对不简单,连贾宪这样的大数学家,也一时间毫无头绪。
即便是他,在没有具备基本的初等数论知识之前,想解决这道题也颇有难度。
若说这是距离宋朝超过一千年的先秦算题,真的有点令人难以置信。
难道那时候的古人,竟然有这样超越时代的知识储备么?
但最令他感到奇怪的,还是这题目与神秘莫测的“玄冥”
之间千丝万缕的联系。
两片金牍同时出现,一片有算题,一片有玄冥画像,这绝不是偶然。
请关闭浏览器阅读模式后查看本章节,否则将出现无法翻页或章节内容丢失等现象。
当现代都市里出现打人如挂画水不过膝。当国术江湖里出现徒手抓子弹神掌天降。当武侠江湖里出现敕鬼驱神摧城搬山。当末法时代里出现天地灵气长生物质。别人练武,吾修仙。...
我,余志乾就算穷死,饿死,被贬为庶民,我也绝不当皇帝...
社畜李白衣意外穿越到一个男尊女卑的大坤王朝,意外成了镇国将军的儿子,李白衣那就一个兴奋,当场就要励志当一辈子的败家子,没事逛逛楼和里面才华横溢的女子探讨人生,学学英语。。。奈何总有人不想让李白衣学英语。也罢!既然不让我学,那就别怪小爷不客气了!...
制霸各大奖项的国民影帝突然冒出来一个女儿,粉丝柯南上线,将这个便宜女儿直接扒皮。打架斗殴,抽烟喝酒,初中辍学,爱慕虚荣,可谓当代青年的负面典型,集所有败德于一...
上辈子,她爱他如命,失去自我。一朝重生,她只想好好爱自己。胖她可以减肥懒她可以改谁知前世渣夫却步步为营,宠她宠到上天入地,无人能及的地步。顾知衡顾太太,过来,我们做点可以生孩子的事情。...
前世,她另有所爱只顾着躲他,不惜顶着私奔的恶名离开他,直到被她爱的人亲手推入火海。今生,她惩治渣男,手撕白莲,步步为营,毕生的目标只是牢牢抓住他。顾长卿我媳妇温柔娴淑,我们家我说了算。众属下悄咪咪提醒搓衣板了解一下。许甜我听说咱家你说了算?顾长卿老婆说话的时候,我闭嘴。各位书友要是觉得重生甜妻在八零还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...